Stability of patterns in reaction-diffusion equations
نویسنده
چکیده
These are lecture notes associated with the hour-long talk “Stability of patterns in reaction-diffusion equations,” given at the BU/Keio Workshop in Dynamical Systems, during Sept 15-19, 2014, at Boston University. The abstract of the talk was: “Reaction-diffusion equations model a wide variety of chemical and biological processes. Such systems are well known for exhibiting patterns, such as traveling waves and spatiallyand/or temporally-periodic structures. One important property of such solutions is whether or not they are stable, which is important because it is typically only the stable solutions that are observed in real world settings. In this talk, I will discus the difference between spectral, linear, and nonlinear stability, and highlight some key methods for analyzing stability.” These notes also contain associated exercises.
منابع مشابه
Stability analysis and simulations of coupled bulk-surface reaction–diffusion systems
In this article, we formulate new models for coupled systems of bulk-surface reaction-diffusion equations on stationary volumes. The bulk reaction-diffusion equations are coupled to the surface reaction-diffusion equations through linear Robin-type boundary conditions. We then state and prove the necessary conditions for diffusion-driven instability for the coupled system. Owing to the nature o...
متن کاملDensity-dependent dispersal and population aggregation patterns.
We have derived reaction-dispersal-aggregation equations from Markovian reaction-random walks with density-dependent jump rate or density-dependent dispersal kernels. From the corresponding diffusion limit we recover well-known reaction-diffusion-aggregation and reaction-diffusion-advection-aggregation equations. It is found that the ratio between the reaction and jump rates controls the onset ...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملPullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کامل